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Introduction

s Observations have shown smoke plumes being injected to
the upper troposphere through ‘pyro-convection’ (e.g.
Fromm et al., 2005).

= Proper treatment of vertical injection of biomass burning
emissions is critical for assessing the regional to global
impact of wild fires.

= In previous studies, biomass burning emissions were
m Emitted only into the boundary layer OR
m Arbitrarily distributed throughout the tropospheric column (e.g., Cook et
al., 2007; Matichuk et al., 2007; Turquety et al., 2007)
= This study: we derive a vertical distribution profile of biomass burning
emissions based on Multi-angle Imaging Spectro-Radiometer (MISR)
smoke plume injection heights.




MISR smoke plume injection height

Based on injection heights of ~700 smoke plumes
observed by MISR over Alaska in summer 2004,
we derived a probability distribution function (pdf)
of biomass burning emission vertical injection.
Emissions are vertically distributed according to
the pdf.

* [Ongoing simulation] Treat the emissions from
individual high-altitude smoke plumes as we treat
emissions (say, SO,) from volcano eruptions.
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Introduction

s Wild fires exhibit strong diurnal variability. Their intensity
and duration are influenced by synoptic weather systems.

s These temporal constraints on biomass burning emissions
are generally not included in CTMs.

= How important are these temporal constraints, say, relative
to the inclusion of vertical injection height?

= Global Fire Emissions Database version 2 (GFEDv2)

= monthly
[ 8day
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Biomass Burning Emissions: Diurnal Cycle and
Synoptic Variability

= A mean diurnal cycle was derived for different geographic regions, based on
GOES Automated Biomass Burning Algorithm (ABBA).
= Initial Spread Index (ISI) was computed using GMAO GEQOS-4 reanalysis

meteorological fields (T, RH, wind speed, and precipitation). Biomass burning
emissions are redistributed within each 8-day period according to the ISI.

Initial Spread Index Inputs and Modeled Emissions for Alaska
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= GEOS-Chem v7-04-10
= GMAO GEOS-4 reanalysis (2%2.5)

GEOS-Chem Simulations

= (Offline) aerosol and tagged CO simulations for summer 2004

Base Diurnal Synoptic Vertical Doubling
emission cycle variability | injection emissions
inventory height
monthlyGFED Monthly
8dayGFED 8day
diurnal GFED 8day Yes
synopGFED 8day Yes Yes
verticalGFED 8day Yes Yes Yes
DBGFED 8day Yes
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Monthly Mean AOD (~550nm), JJA 2004
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Model simulations underestimate AODs in the biomass burning source and downwind
regions (e.g., Alaska and southern Africa).
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Model simulations (8day GFED based) capture the day-to-day
variability of AOD but miss some high values.
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GEOS-Chem simulated spatial distributions of monthly mean surface aerosol concentrations are
in reasonable agreement with observations from the IMPROVE network, including over the

_ biomass burning source regions.
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* Good correlations between model simulations (8dayGFED based) and IMPROVE observations.
* Surprisingly, imposing diurnal cycle, synoptic variability, and vertical injection height (as
implemented here) has small effect on the simulated day-to-day variability of surface aerosols.




Combined Effect of Additional Constraints

diurnal cycle, synoptic variability, vertical injection
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Increased transport of biomass burning emissions out of the boundary layer (over the source
regions) to high altitudes and downwind of the source regions.




with INTEX-NA Observations
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Despite good correlations in modeled and measured vertical profiles, the model simulations
(even with vertical injection height) are not able to reproduce the high CO and BC
concentrations at ~400 hPa during the July 18, 2004 flight.

BC mass concentrations were converted from aerosol absorption coefficient (m!) using a
mass absorption efficiency of 7 m?/g following Park et al. [2005].




CO column

MOPITT GEOS-Chem, vertical GFED
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* MOPITT CO column is sensitive to middle-to-upper troposphere atmosphere

* Model simulations underestimate CO column compared to MOPITT



Treat ‘Deep-convective’ Smoke Plumes as Volcano Eruptions?
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* For a model grid in which high smoke plumes are identified (by MISR), we distribute (all
the biomass burning emissions according to the (MISR-estimated) injection height.

» Biomass burning emissions in other grids are distributed vertically according to the pdf we
derived from the MISR smoke plume database.

* There is some correlation between the emissions and injection height - a way to deal with
(extrapolate) cases where no MISR data are available?



Summary

= Using 8-day instead of monthly biomass burning emissions
significantly improves the comparison of mass concentrations of
BC, OC, and sulfate with observations.

= The inclusion of diurnal cycle, synoptic variability, and vertical
injection height in biomass emission inventory leads to more
efficient transport of aerosols/CO out of the boundary layer,
resulting in lower aerosol/CO loadings over the biomass source
regions and higher loadings downwind.

= Spatial distribution and day-to-day variations of surface aerosol
concentrations agree well with the observation. But current model
simulations underestimate the AOD, CO column, and high altitude
aerosol/CO concentrations in the downwind regions. A more
realistic treatment of smoke injection height may improve the
simulation.
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